Module Name	Module Code		
Selection in Plant Breeding	agrigAEF020-02b		
Module Coordinator			
Prof. Dr. Christian Jung			
Organizer			
Institute of Crop Science and Plant Breeding - Plant Breeding			
Faculty			
Faculty of Agricultural and Nutritional Sciences			
Examination Office			
Faculty of Agricultural and Nutritional Sciences - Examination Office			

ECTS Credits	6
Evaluation	Graded
Duration	one semester
Frequency	Only takes place during summer semesters
Workload per ECTS Credit	30 hours
Total Workload	180 hours
Contact Time	60 hours
Independent Study	120 hours
Teaching Language	English

Recommended Requirements

Advanced understanding of genetics and breeding methodologies according to modules Introduction to Molecular Biology AEF-agrig001 and Introduction to Crop and Animal breeding AEF-agrig004

Module Courses

Course Type		Compul- sory/Optional	sws
Practical exercise	Selection in Plant Breeding	Compulsory	1
Lecture	Selection in Plant Breeding	Compulsory	1
Internship	Selection in Plant Breeding	Compulsory	2

Examination(s)				
Examination Name	Type of Examination	Evaluation	Compulsory / Optional	Weighting
Protocol: Selection in Plant Breeding	Protocol	Graded	Compulsory	100
Further Information on the Examination	on(s)		-	•
 1.+2. period in summer semester 1. period in winter semester Examiner: Dr. Nazgol Emrani (if Dr. Emr Qis: 100201 with number of Examination 		Dr. Christian Jung	will examine)	
Course Content				
The concept of molecular markers to ma Marker assisted selection, DNA isolation PCR and and agarose gel electrophores		QTL		

Phenotyping a barley DH population for agronomically important traits

Molecular and phenotypic marker genotyping

Chi-square test to analyze segregation ratios in the DH population

Calculating recombination rates manually and by applying the JOINMAP program package

Learning Outcome

This course will give the students the opportunity to learn the concept of molecular markers and genetic linkage through lectures, practical experiments and exercises. During the lecture, the students learn the basics of linkage mapping and the concept and different types of molecular markers. Then they will conduct an experiment in the practical part of the course to detect genetic linkage between molecular markers and loci controlling traits like spikelet or awn characters in barley. The students will isolate DNA from 92 DH lines from Oregon Wolfe Barely population. Then they will genotype the population alongside with parents with molecular markers. Simultaneously, the students will phenotype the DH lines for different spikelet and awn characters. At the end of the course, the students will assess the existence of genetic linkage between the markers and the loci controlling the phenotyped traits using a statistical test (#2 test). In case of genetic linkage, the recombination rate will be calculated. Additionally, the lecturer will provide the students with several examples for calculating the recombination frequency from different segregating populations as additional exercises

Reading List

will be announced at the beginning of the course, Lab protocol, Lecture slides, Scientific literature, Textbooks

Bernardo R (2010) Breeding for Quantitative Traits in Plants. Second edn. Stemma Press, Woodbury, Minnesota

Carena MJ (2009) Handbook of Plant Breeding: Cereals. Springer Science Xu Y (2010) Molecular Plant Breeding. CABI, Oxfordshire, UK

Additional Information

Maximum number of participants: 10 (5 AgriGenomics and 5 Agricultural Science) Enrolment by OLAT within workdays Monday Through Friday in the 1nd week of the 2. audit period of the preceding semester. Following information is necessary: matriculation number last name first name striven degree study study program

The allocation of the places takes place in the 2nd week f the 2. audit period of the preceding semester. Acceptance of the place by students only through participation at the first day of the course. Students without aplace can get a place at the first day of the course by move-up procedure

Use	Compulsory / Optional	Semester
Master, 1-Subject, Agricultural Sciences, Specialisation Agricul- tural Economics, (Version 2017)	Optional	-
Master, 1-Subject, Agricultural Sciences, Specialisation Agricul- tural Economics, (Version 2013)	Optional	-
Master, 1-Subject, Agricultural Sciences, Specialisation Agribusiness, (Version 2017)	Optional	-
Master, 1-Subject, Agricultural Sciences, Specialisation Agribusiness, (Version 2013)	Optional	-
Master, 1-Subject, Agricultural Sciences, Specialisation Crop Sciences, (Version 2017)	Optional	-
Master, 1-Subject, Agricultural Sciences, Specialisation Crop Sciences, (Version 2013)	Optional	-
Master, 1-Subject, Agricultural Sciences, Specialisation Animal Sciences, (Version 2017)	Optional	-
Master, 1-Subject, Agricultural Sciences, Specialisation Animal Sciences, (Version 2013)	Optional	-
Master, 1-Subject, Agricultural Sciences, Specialisation Environ- mental Sciences, (Version 2017)	Optional	-
Master, 1-Subject, Agricultural Sciences, Specialisation Environ- mental Sciences, (Version 2013)	Optional	-
Master, 1-Subject, AgriGenomics, (Version 2017)	Optional	-
Master, 1-Subject, Nutritional and Food Science, (Version 2013)	Optional	-
Master, 1-Subject, Nutritional and Consumer Economics, (Version 2017)	Optional	-
Master, 1-Subject, Nutritional and Consumer Economics, (Version 2013)	Optional	-